:::: MENU ::::

ग्रहों की स्थिति

Q1. दूरी के अनुसार ग्रहों की स्थिति ? बुध (Mercury) शुक्र (Venus) पृथ्वी (Earth) मंगल (Mars) वृहस्पति (Jupiter) शनि (Saturn) यूरेनस (Uranus)...

Agriculture: Nanotechnology can be used in agriculture and food production in the form of Nano sensors for monitoring crop growth and pest control by early identification of plant diseases. These Nano sensors can help enhance production and improve food safety. With inputs related to water use, fertiliser and pesticides delivered in nanoscale productivity and yield can be increased.

Medical applications: Development of newer drug delivery systems based on nanotechnology methods is being tried for conditions like cancer, diabetes, fungal infections, and viral infections and in gene therapy. Nanotechnology has also found its use in diagnostic medicine as contrast agents, fluorescent dyes and magnetic nanoparticles.

Electronics: The semiconductor industry has been able to improve the performance of electronic systems for more than four decades by downscaling silicon-based devices. Carbon nanomaterials such as one dimensional (1D) carbon nanotubes and two dimensional (2D) graphene have emerged as promising options due to their superior electrical properties which allow for fabrication of faster and more power-efficient electronics.

Textiles and Clothing: Nanotechnology has shown a huge potential in the textile and clothing industry which is normally very traditional. Coating is a common technique used to apply Nano-particles onto textiles. The success of nanotechnology in textile applications lies in areas of durability, flexibility, wash ability and softness. The use of nanotechnology allows textiles to become multifunctional and produce fabrics with special functions, including antibacterial, UV-protection, easy clean, water & stain repellent and anti-odour.

Energy equipment: Nanoscales and nanoporous membranes are being used to facilitate production of biomass fuel. Energy transmission could potentially be made much more efficient by using engineered nanomaterials. Throughout the renewable-energy sector, nanotechnology has the potential to increase process efficiencies and process yields, decrease costs and enable energy processes that would not be attainable any other way.

0 comments:

Popular Posts